
6 Oct 2004 19:43 AR AR229-ES35-05.tex AR229-ES35-05.sgm LaTeX2e(2002/01/18) P1: GJB
10.1146/annurev.ecolsys.35.021103.105725

Annu. Rev. Ecol. Evol. Syst. 2004. 35:113–47
doi: 10.1146/annurev.ecolsys.35.021103.105725

Copyright c© 2004 by Annual Reviews. All rights reserved
First published online as a Review in Advance on June 10, 2004

ECOLOGICAL IMPACTS OF DEER OVERABUNDANCE
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email: steeve.cote@bio.ulaval.ca, jean-pierre.tremblay@bio.ulaval.ca,
christian.dussault@fapaq.gouv.qc.ca
2Department of Botany, University of Wisconsin, Madison, Wisconsin 53706;
email: tprooney@facstaff.wisc.edu, dmwaller@wisc.edu

Key Words browsing, Cervidae, forest regeneration, herbivory, plant-herbivore
interactions

■ Abstract Deer have expanded their range and increased dramatically in abun-
dance worldwide in recent decades. They inflict major economic losses in forestry,
agriculture, and transportation and contribute to the transmission of several animal and
human diseases. Their impact on natural ecosystems is also dramatic but less quanti-
fied. By foraging selectively, deer affect the growth and survival of many herb, shrub,
and tree species, modifying patterns of relative abundance and vegetation dynamics.
Cascading effects on other species extend to insects, birds, and other mammals. In
forests, sustained overbrowsing reduces plant cover and diversity, alters nutrient and
carbon cycling, and redirects succession to shift future overstory composition. Many
of these simplified alternative states appear to be stable and difficult to reverse. Given
the influence of deer on other organisms and natural processes, ecologists should ac-
tively participate in efforts to understand, monitor, and reduce the impact of deer on
ecosystems.

INTRODUCTION

Deer have excited the interest of ecologists since the birth of our discipline. Interest
in managing game populations fostered the development of ecology, particularly
the emergence of wildlife ecology (Leopold 1933). Deer management began with
understanding which habitat conditions were most favorable for deer. Later, ecol-
ogists became interested in the effects of predators and hunters on deer and in
the effects of deer on plant populations and habitat conditions. Ironically, within
a century, deer management has reversed course from a preoccupation with aug-
menting population growth through habitat protection, hunting regulations, and
predator control to serious concerns about how best to limit deer densities and the
consequent impacts of these animals on other ecosystem constituents and functions
(Garrott et al. 1993).
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Overabundance is a value judgment that has a clear meaning only when placed
in a specific context (McShea et al. 1997b). Caughley (1981) proposed a series
of definitions to summarize the ecological and nonecological values upon which
overabundance diagnostics have been based: Animals are overabundant when they
(a) threaten human life or livelihood, (b) are too numerous for their “own good,”
(c) depress the densities of economically or aesthetically important species, or
(d) cause ecosystem dysfunction. Here, we follow this sequence and explore some
of the human-deer conflicts implicit in points (a) and (c). We then emphasize
point (d) throughout the review and show that negative effects of abundant deer
occur at various densities in different habitats. The density-dependent effects on
life-history traits implicit in point (b) are not addressed here, but see McCullough
(1979, 1999) for more information.

We review some historic studies of the impact of overabundant deer and sum-
marize how shifts in habitat conditions and levels of predation have boosted deer
population growth in many temperate ecosystems. We explore how overabun-
dant deer affect human health, forestry, and agriculture and describe the various
methods used to evaluate how deer affect tree seedlings, shrubs, and herbaceous
plants. We consider how deer alter interactions among competing plants; patterns
of forest regeneration; succession; populations of insects, birds, and other mam-
mals; ecosystem processes; and overall community structure. The number and
significance of these effects make clear that deer can tip forest ecosystems toward
alternative states by acting as “ecosystem engineers” or “keystone herbivores,”
greatly affecting the structure and functioning of temperate and boreal forests
(McShea & Rappole 1992, Stromayer & Warren 1997, Waller & Alverson 1997).
These profound impacts lead us to ponder how ecology might inform approaches
to mitigating the effects of overabundant deer. We discuss how ecological research
might be extended and linked more tightly to deer management. Because space
and our expertise are limited, we focus our attention on interactions between deer
(family Cervidae) and temperate/boreal forests, primarily in Europe and North
America.

HISTORICAL INTEREST IN DEER IMPACTS ON PLANT
COMMUNITIES AND ECOSYSTEM STRUCTURE

By the nineteenth century, natural historians recognized that overabundant deer
could exclude certain plants from the landscape (Watson 1983). Systematic studies
of deer overabundance, however, did not occur until after the emergence of wildlife
ecology, developed by Aldo Leopold. Based on his experiences with the dangers
of deer overabundance, Leopold was the first to discuss threats posed by growing
deer herds (Leopold 1933, Leopold et al. 1947). Leopold’s warnings sparked an
initial period of concern in the 1940s and 1950s, mainly in the midwestern United
States, which prompted the construction of exclosures to demonstrate the influence
of native deer on forest regeneration (Beals et al. 1960, Pimlott 1963, Stoeckler
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et al. 1957, Webb et al. 1956). Interest in deer impacts expanded in the 1970s,
primarily in the Midwest and the Allegheny region of Pennsylvania (Anderson
& Loucks 1979, Behrend et al. 1970, Harlow & Downing 1970), but with added
attention to the introduced Sitka black-tailed deer (Odocoileus hemionus sitkensis)
in the Queen Charlotte Islands of Canada (Pojar et al. 1980). Concerns about the
impact of native deer populations in Europe (Dzieciolowski 1980) and introduced
deer in New Zealand (Caughley 1983, Stewart & Burrows 1989) developed at the
same time.

Seminal experiments on the population dynamics of white-tailed deer
(Odocoileus virginianus) on the George Reserve in Michigan were conducted in
the 1970s (McCullough 1979). The introduction of deer into a fenced area demon-
strated that, because deer have such a high potential rate of increase, they can
easily overwhelm the carrying capacity of their environment and consequently
have strong and persistent negative impacts on vegetation (McCullough 1979,
1997).

In North America, the study of deer impacts soon broadened to include birds
(Casey & Hein 1983), interactions with weeds (Horsley & Marquis 1983), and
long-term effects on forest composition (Frelich & Lorimer 1985) and sapling-
bank diversity (Whitney 1984). By the late 1980s and early 1990s, the impacts
resulting from high densities of deer were being tallied in review articles (Alverson
et al. 1988; Gill 1992a,b; McShea & Rappole 1992; Miller et al. 1992). Broad
considerations of deer impacts also emerged in the 1994 conference hosted by
the Smithsonian Institution (McShea et al. 1997b) and a 1997 special topics issue
of the Wildlife Society Bulletin (Vol. 25, No. 2). Similar recent review issues
of Forestry (2001, Vol. 74, No. 3) and Forest Ecology and Management (2003,
Vol. 181, No. 2–3) focused mostly on how deer affect European forests.

CAUSES OF DEER OVERABUNDANCE

Overexploitation in the second half of the nineteenth century led to major declines
in deer numbers and range. Subsequent protection of deer via restricted seasons
and game laws then led to rapid population increases across Europe and North
America over the past 75 to 150 years (Fuller & Gill 2001, Jedrzejewska et al.
1997, Leopold et al. 1947, McShea et al. 1997b, Mysterud et al. 2000). In Virginia,
white-tailed deer increased from an estimated 25,000 animals in 1931 to 900,000
animals by the early 1990s (Knox 1997). Although whether North American deer
are currently more abundant than before European colonization is not known,
the evidence suggests that current deer numbers are unprecedented (McCabe &
McCabe 1997).

Deer populations in North America have grown rapidly since the 1960s to
1970s in response to changes in their environment and reduction of hunting pres-
sure (McShea et al. 1997b). The number of moose (Alces alces) in Scandinavia
has similarly increased three to five times since the 1970s (Skolving 1985, Solberg
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et al. 1999). Deer densities above 10/km2 are now common throughout temperate
zones (Fuller & Gill 2001, Russell et al. 2001). In North America, deer have been
reintroduced in many states (McShea et al. 1997b) and introduced to islands free of
predators (e.g., Anticosti, PQ, Canada) (Côté et al. 2004). These introductions con-
tributed to the recovery and subsequent overabundance of deer populations (Knox
1997).

The most obvious factor contributing to the rapid growth of deer populations is
increased forage. Widespread agricultural and silvicultural activities considerably
improved deer habitat throughout the twentieth century (Alverson et al. 1988,
Fuller & Gill 2001, Porter & Underwood 1999). Tree planting after logging and
early successional forested landscapes provide abundant, high-quality food that
increases deer habitat carrying capacity (Bobek et al. 1984, Fuller & Gill 2001,
Sinclair 1997). Forest harvesting and the resulting interspersion of habitats provide
good cover and abundant forage for deer (Diefenbach et al. 1997). Many openings
are also intentionally managed to boost forage quality and population growth
(Waller & Alverson 1997).

Reductions in hunting and natural predators across Europe and North America
have also contributed to increasing deer populations. Since the 1920s, strict hunting
regulations in North America have favored deer population increases, especially
on some private lands and in parks where hunting was banned (Brown et al.
2000, Diefenbach et al. 1997, Porter & Underwood 1999). Even where hunting is
allowed, game laws favor the killing of males, increasing female survival and, thus,
population growth (Ozoga & Verme 1986, Solberg et al. 1999). In recent decades,
the pressure has increased to reform game laws to allow hunting of more does and
fawns in response to overabundant herds. Hunters, however, have been reluctant
to embrace such reforms (Riley et al. 2003). The number of deer hunters has also
stabilized or decreased with declines in the social acceptability of hunting (Brown
et al. 2000, Enck et al. 2000, Riley et al. 2003). At the same time, land owners
and municipalities increasingly prohibit hunting in response to safety concerns
(Kilpatrick et al. 2002), which further diminishes hunting pressure (Brown et al.
2000).

By the middle of the twentieth century, wolves (Canis lupus) had disappeared
from continental Europe and most areas south of the North American boreal forests
(Boitani 1995, Paquet & Carbyn 2003). Mountain lions (Puma concolor) were
also extirpated in eastern North America (McCullough 1997). Without preda-
tors, ungulate populations increase rapidly to (or beyond) the carrying capacity
of available forage (McCullough 1997, Messier 1994, Potvin et al. 2003, Sæther
et al. 1996). Their high intrinsic rate of population increase may also allow deer
to escape predator control while making overshoot of habitat carrying capacity
and fluctuations in population size more likely. Moderate climates as experi-
enced recently may also contribute to deer overabundance (Forchhammer et al.
1998, Solberg et al. 1999). Mild winters increase deer body mass (Mysterud
et al. 2001) and winter survival (Loison et al. 1999), which favor population
growth.
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SOCIAL AND ECONOMIC CONSEQUENCES
OF DEER OVERABUNDANCE

Impacts on Human Activities

Deer generate both positive and negative economic values, and negative values in-
crease as deer become overabundant (Conover 1997). Browsing of tree seedlings by
deer reduces economic value, ecological stability, and species diversity of forests,
in addition to reducing tree growth, which, in turn, diminishes protection from
erosion and floods (Reimoser 2003). The total cost of deer damage to the forest
industry is difficult to estimate. The loss of young trees, for example, results in
long-term economic losses only if the composition and quality of the final stand are
affected. Despite the apparent severity of deer damage to agriculture and forestry in
Britain, the economic significance is considered negligible or small in many cases
(Putman 1986, Putman & Moore 1998). In contrast, deer damage is considered a
major problem in the United States and in Austria, where their annual impacts are
estimated at more than $750 million (Conover 1997) and more than 220 million
(Reimoser 2003), respectively. In northern temperate forests, saplings 30 to 60 cm
tall are most vulnerable to browsing (Andren & Angelstam 1993, Gill 1992a, Kay
1993, Welch et al. 1991). Browsing by deer can kill seedlings or reduce height
growth, which results in lower-density stands and requires longer stand rotations
(Kullberg & Bergström 2001). Stands subjected to heavy browsing of seedlings and
saplings exhibit a size structure biased toward medium and large stems (Anderson
& Loucks 1979, Potvin et al. 2003, Stromayer & Warren 1997, Tilghman 1989).
When the terminal bud is browsed, the tree develops multiple leaders (Putman &
Moore 1998), which decreases its commercial value. Lavsund (1987) indicated
that the proportion of quality stems dropped from 63% to 18% in a stand sub-
jected to heavy browsing by moose in Sweden. Bark stripping may kill trees but
often decreases quality by girdling, growth reduction, and increased risk of fungal
infections (Gill 1992b, Putman & Moore 1998).

Reimoser (2003) suggested that the severity of damage to trees depends more
on forest attractiveness to deer than on deer abundance. Stands become more
susceptible to deer damage with (a) a low density of alternate food plants (Gill
1992a, Partl et al. 2002, Welch et al. 1991), (b) a low density of seedlings (Andren
& Angelstam 1993, Lyly & Saksa 1992, Reimoser & Gossow 1996), (c) abundant
nitrogen in the foliage or soil (Gill 1992a), (d) hiding cover (Gill 1992a, Kay
1993, Partl et al. 2002), and (e) the presence of edges (Kay 1993, Lavsund 1987,
Reimoser & Gossow 1996). On larger scales, deer impacts on vegetation are greater
in fragmented landscapes (Hornberg 2001, Reimoser 2003) or low-productivity
habitats (Danell et al. 1991).

White-tailed deer damage many agricultural crops in the United States (Conover
2001). In 1996, 14% of nursery owners in the northeastern United States reported
damages exceeding $10,000 (Lemieux et al. 2000). Deer damage to corn fields in
the United States was estimated at 0.23% of the total production ($26 million) in
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1993 (Wywialowski 1996). Abundant deer also damage gardens and ornamentals
(McCullough et al. 1997, West & Parkhurst 2002). Deer damage to households
and agriculture in the United States totaled $351 million in 1991 (Conover 1997).

A primary cost to society of deer overabundance is increased vehicle acci-
dent rates, now a serious problem in Europe, the United States, and Japan. Deer-
vehicle collisions increase as deer density and traffic volume increase (Groot
Bruinderink & Hazebroek 1996). Groot Bruinderink & Hazebroek (1996) esti-
mated that 507,000 collisions between vehicles and ungulates occur annually in
Europe (excluding Russia) and result in 300 deaths, 30,000 injuries, and $1 billion
in material damage. In the United States, such accidents increased from 200,000 in
1980 to 500,000 in 1991 (Romin & Bissonette 1996) and cost more than $1 billion
in 1991 (Conover 1997). Many airports in Canada and the United States also expe-
rience deer-aircraft problems (Bashore & Bellis 1982, Fagerstone & Clay 1997).

Transmission of Wildlife Diseases and Zoonoses

In general, high population densities of deer favor the transmission of infectious
agents (Davidson & Doster 1997). Increased deer densities appear to increase
the transmission of tick-borne zoonoses directly by increasing tick (Ixodes spp.)
abundance (Ostfeld et al. 1996, Wilson & Childs 1997). In North America, two
tick-borne diseases threaten human health: Lyme disease and ehrlichiosis (<5%
mortality in humans) (Telford III 2002). Lyme disease has quickly become the
most common vector-borne disease in the United States (13,000 cases in 1994;
Conover 1997) and is also found in Europe and Asia (Steere 1994). The incidence
of Lyme disease appears to track deer density in the eastern United States (Telford
III 2002; Wilson et al. 1988, 1990).

Deer transmit infectious agents directly to other deer, to livestock, and to hu-
mans, especially if deer density is high. Bovine tuberculosis (Mycobacterium bo-
vis) causes mortality in deer, livestock, other wildlife species, and humans (Schmitt
et al. 1997). M. bovis affects deer populations of New Zealand and Europe to vari-
ous degrees (Clifton-Hadley & Wilesmith 1991). It has been rare in North America,
but incidence could increase as deer densities increase (Schmitt et al. 1997). A re-
cent outbreak in Michigan led to concern that it would spread to domestic cattle
and to a ban on deer feeding (Miller et al. 2003).

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy
similar to “mad cow” disease (Williams et al. 2002). The disease was first noticed
in 1967 in mule deer (Odocoileus hemionus) and has now spread to elk (Cervus
elaphus), white-tailed deer, and black-tailed deer across a broad region (Figure 1)
(Williams et al. 2002). The pattern of spread suggests that the disease may be
transmitted from farm-raised herds (25 identified with CWD by 2002) to wild
animals (Williams et al. 2002). Although it can be transmitted within and among
cervid species (Gross & Miller 2001), transmission to humans or noncervid species
appears unlikely (Raymond et al. 2000). Because it develops slowly, it would not
appear to limit population growth greatly, but some experts express concern that it
could cause population extinctions (Williams et al. 2002). Concerns over potential
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Figure 1 Map showing states and provinces where chronic wasting disease (CWD) has
been found in wild deer or elk populations or in captive herds across North America. Note
the association between captive animals with CWD and escape into the wild.

human health risks from CWD could also substantially reduce hunter efforts, which
already appear too low to control deer populations effectively (see the Management
Issues section).

ASSESSING ECOLOGICAL EFFECTS OF DEER
OVERABUNDANCE

Through most of the twentieth century, research focused on how deer affected
particular species of interest (often trees) or specific areas of concern. Because
site-specific management concerns drove research programs, pseudoreplication
was a common feature of early research (Hurlbert 1984). There has been a gradual
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shift toward understanding overabundance within a stronger scientific framework.
Despite this shift, the most common approaches for assessing deer impacts have
not changed. Following Diamond (1983), we distinguish among natural, field, and
laboratory experimental approaches.

In natural experiments, researchers select sites and collect data where spatial
variation in deer abundance can be exploited. Spatial variation in deer densities
allows the creation of discrete or continuous independent variables. Discrete vari-
ation arises in island-mainland systems. Deer may be absent on some islands but
overabundant on others; both states offer a contrast to populations on the mainland
(Balgooyen & Waller 1995, Beals et al. 1960, Côté et al. 2004, Vourc’h et al.
2001). Discrete variation may also appear in mainland systems if management
varies starkly across ownership boundaries. Hunting bans on private lands and,
particularly, on public lands can cause population densities to exceed those in
the surrounding landscape (Nixon et al. 1991, Porter & Underwood 1999). The
presence of ungulate predators can have the opposite effect; that is, reducing deer
densities and impacts (Ripple & Beschta 2003, White et al. 2003). Within habi-
tats, cliffs, boulder tops, and other physical features of the environment can create
ungulate-free refuges for plants (Long et al. 1998, Rooney 1997). Such variation
creates opportunities to study deer impacts by using discrete variation. Deer abun-
dance also varies across landscapes in response to predation pressure (Lewis &
Murray 1993, Martin & Baltzinger 2002) and habitat quality (Alverson et al. 1988,
Reimoser & Gossow 1996), and this variation can be used to analyze ecosystem
responses across gradients in deer density (Alverson & Waller 1997; Didier &
Porter 2003; Rooney et al. 2000, 2002; Takada et al. 2001; Waller et al. 1996).
The drawbacks of this approach are the difficulty in establishing replicates and the
problem of confounding site factors (such as productivity) that themselves affect
deer densities or responses to herbivory (Bergström & Edenius 2003).

The effects of overabundant deer on plants can also be studied across time. Vila
et al. (2001, 2003), for example, tied browsing scars and historical variation in
growth rates to fluctuating deer densities on the Queen Charlotte Islands, Canada.
Before-and-after or snapshot-type studies have also been used to infer how species
respond to fluctuating browsing pressure when baseline data exist (Husheer et al.
2003, Rooney & Dress 1997, Sage et al. 2003, Whitney 1984). Many such studies
reflect conspicuous “signatures” of deer browsing as community composition shifts
toward browse-tolerant or unpalatable species (Husheer et al. 2003). Long-term
monitoring can, thus, provide powerful insights into how deer drive changes in plant
communities, particularly when combined with exclosures or direct observations
of which plants deer preferentially consume.

In field experiments, researchers manipulate deer densities or vegetation to study
deer impacts. The use of fencing (exclosures) to exclude deer from study plots is
a venerable experimental approach (Daubenmire 1940). Despite all the insights
that exclosure studies bring to our understanding of deer-forest interactions, they
are limited to binary treatments: They allow researchers to infer what alternate
trajectory a site would take in the absence of deer. Controlled grazing experiments
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that utilize known deer density in enclosures appear more realistic and can be used
to infer whole-community responses to manipulated deer densities (Côté et al.
2004, deCalesta 1994, Hester et al. 2000, Horsley et al. 2003, McShea & Rappole
2000, Tilghman 1989). Deer densities can also be manipulated through culling.
Researchers can take advantage of culling efforts in parks and natural areas by
monitoring vegetation or other response variables (Cooke & Farrell 2001). Direct
manipulations of density through localized management can also be conducted
under scientific objectives (Côté et al. 2004). Alternatively, vegetation can be
subjected to experimental treatment. Simulated browsing treatments reveal how
plants respond to defoliation in natural environments (Bergström & Danell 1995,
Rooney & Waller 2001). Experimental plantings in conjunction with exclosures
more accurately compare the effects of deer browsing on plant growth and mortality
(Alverson & Waller 1997, Fletcher et al. 2001b, Ruhren & Handel 2003).

Laboratory experiments give researchers a high degree of control over ex-
perimental systems. Defoliation experiments can be conducted under a range of
controlled environmental conditions in greenhouses or growth chambers to inves-
tigate the mechanisms of plant responses (Canham et al. 1994). Simulation models
also allow researchers to forecast how deer might affect ecosystems under a broad
range of deer-population and forest-management scenarios (Tremblay et al. 2004).

Each of these approaches has its strengths and weaknesses. Stronger inferences
can be drawn when they are combined. Waller & Alverson (1997), for example,
combined experimental plantings, exclosures, and geographic variation in deer
densities to examine the effects of deer browsing on Tsuga canadensis growth and
survival rates across a broad region. Augustine et al. (1998) combined exclosures,
geographic variation in deer densities, and a simple plant-herbivore functional re-
sponse model to predict time-to-extinction of forest herb populations as a function
of initial abundance. Balgooyen & Waller (1995) and Martin & Balzinger (2002)
compared plant responses across islands that varied in deer abundance because
of hunting and introductions, both currently and historically. Meta-analysis can
similarly strengthen our inferences. Gill & Beardall (2001) combined data from
13 studies to examine the effects of ungulate browsing on richness and diversity
of tree species in British woodlands.

ECOLOGICAL CONSEQUENCES OF DEER
OVERABUNDANCE

Plant Tolerance and Resistance to Herbivory

Deer directly affect the growth, reproduction, and survival of plants by consuming
leaves, stems, flowers, and fruits. Plants defend themselves against herbivores in
various ways that affect which plants are attacked, how they respond to those
attacks, how herbivore individuals and populations respond to those defenses,
and, ultimately, how herbivores affect ecosystem productivity and rates of nutrient
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cycling. Plants are often classified according to the degree to which they either
resist herbivory or tolerate it. Resistant plants have traits that reduce plant selection
(such as chemical defenses or low digestible content) or traits that reduce intake
rates (such as leaf toughness or morphological defenses). Tolerant species can
endure some defoliation with little change in growth, survival, or reproduction,
whereas intolerant species are more sensitive to defoliation. In addition, woody
plants often reduce their chemical and physical defenses as they grow beyond the
range of mammal browsing (Bryant & Raffa 1995).

In environments with herbivores, natural selection should favor enhanced mor-
phological and chemical defenses in plants with low tolerance. Takada et al. (2001)
examined populations of the shrub Damnacanthus indicus (Rubiaceae) in areas
with and without deer. Individual plants in areas with deer increased allocation to
thorns: Both spine thickness and density were greater where deer were present.
Induced and constitutive chemical defenses can make plants less palatable to deer.
Red deer (Cervus elaphus) tend to avoid Picea sitchensis saplings that have higher
concentrations of monoterpenes in their foliage (Duncan et al. 2001). Vourc’h
et al. (2001) demonstrated that Thuja plicata saplings growing on islands with-
out deer had evolved lower concentrations of foliar monoterpenes than mainland
saplings growing in areas with deer. The rapid evolution of reduced defenses in
cases like these strongly implies that anti-herbivore defenses are costly in terms of
energy (or fitness) in situations where herbivores are scarce or absent. In environ-
ments without herbivores, undefended plants outperform defended plants (Gomez
& Zamora 2002). However, selection will rarely occur quickly enough to rescue
palatable populations faced with sustained overabundant deer, especially in trees
where reproducing individuals are not subjected to browsing.

Tolerance to herbivory differs among species and among individuals within
species. It depends on the timing and intensity of herbivory (Doak 1992, Saunders
& Puettmann 1999), individual plant genotype (Hochwender et al. 2000), specific
growth strategies (Canham et al. 1994, Danell et al. 1994), history of past defoli-
ation or other stress (Cronin & Hay 1996, Gill 1992b), the density of competitors,
and the degree to which the plant is under nutrient or moisture stress (Canham et al.
1994, Maschinski & Whitham 1989). Plants that lose only a small fraction of their
leaves or flowers, store resources underground, hide their meristems (as in grasses),
or regrow quickly via indeterminate growth tolerate deer herbivory better (Augus-
tine & McNaughton 1998). Such species include many annuals, graminoids, decid-
uous trees, and shrubs and many herbs and forbs that mature in late summer. Some
of the browse-tolerant species even appear to gain more biomass (or more flow-
ers and seeds) over the course of a season than undefoliated control plants (Hobbs
1996, McNaughton 1979, Paige & Whitham 1987). Increases in final biomass yield
could reflect shifts in either allocation and growth form, increased photosynthetic
rates, or both. Browsing alters plant growth forms when a single terminal leader
is removed, apical dominance is broken, and axillary buds give rise to a profusion
of branches. Photosynthetic rates rise when changes in the water balance of resid-
ual leaves lead to an increase in stomatal conductance and foliar concentrations
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of carboxylating enzymes (McNaughton 1983). Although such overcompensation
might be temporary, plants such as graminoids no doubt thrive under repeated
grazing. Other plants can compensate at low to moderate levels of defoliation but
decline once herbivore densities are high (Bergelson & Crawley 1992). Plants
may also reallocate resources to grow taller or shorter when browsed (Bergström
& Danell 1995, Canham et al. 1994, Edenius et al. 1993, Saunders & Puettmann
1999). Compensatory growth, however, can limit radial growth and rarely appears
under repeated and heavy browsing pressure. Trees with a history of browsing also
appear more susceptible to new browsing, reflecting reduced reserves, changes in
tree morphology, or both (Bergqvist et al. 2003, Danell et al. 1994, Palmer &
Truscott 2003, Welch et al. 1992). Deer, however, often avoid previously browsed
twigs, perhaps because of induced defenses (Duncan et al. 1998).

In general, slow-growing plants will tolerate browsing less, particularly if such
browsing is repeated. Shady forest understory plants, including shade-tolerant
shrubs and tree seedlings, may thus be particularly vulnerable to deer browsing.
Small spring ephemeral and early summer forest herbs that lose all their leaves or
flowers in a single bite and cannot regrow also tolerate herbivory poorly (Augustine
& McNaughton 1998, Augustine & DeCalesta 2003). Browse-intolerant species
such as Trillium regularly suffer low or negative growth after defoliation (Rooney
& Waller 2001).

Browsing directly affects reproduction in many plants, particularly if deer pref-
erentially forage on reproductive plants or consume flowers (Augustine & Frelich
1998). Individuals of some species may not flower again for several seasons after
defoliation (Whigham 1990). Where deer are abundant, browse-intolerant herbs
tend to be smaller, less likely to flower, and less likely to survive relative to plants
in exclosures (Anderson 1994; Augustine & Frelich 1998; Fletcher et al. 2001a;
Ruhren & Handel 2000, 2003). Over time, the density of such intolerant plants tends
to decline, and populations may be extirpated (Rooney & Dress 1997). Palatable
herbs and shrubs such as Taxus canadensis remain susceptible to deer browsing
throughout their lives and usually become more vulnerable to browsing as they
grow larger. Deer forage selectively on the larger Trillium grandiflorum plants
(Anderson 1994, Knight 2003). This foraging does not kill these plants because
they have large, below-ground storage organs. However, defoliation often takes
tall flowering stems and may cause the plants to regress in size (Knight 2003,
Rooney & Waller 2001). Thus, populations subjected to abundant deer become
both scarcer and dominated by small, often nonreproductive plants (Anderson
1994, Knight 2003).

Trees are obviously most vulnerable to herbivory as seeds (e.g., Quercus acorns),
seedlings, or small saplings (Potvin et al. 2003). Tsuga canadensis seedlings and
saplings have become scarce across much of their range in the upper Midwest in
apparent response to deer browsing (Alverson & Waller 1997, Anderson & Katz
1993, Frelich & Lorimer 1985, Rooney et al. 2000, Waller et al. 1996). Thuja
occidentalis is also disappearing from most sites in this region because deer have
eliminated nearly every sapling taller than 30 cm (Rooney et al. 2002). Persistent



6 Oct 2004 19:43 AR AR229-ES35-05.tex AR229-ES35-05.sgm LaTeX2e(2002/01/18) P1: GJB
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mature trees could repopulate sites with new seedlings and saplings if browsing
declined for some window of time, but this window may be as long as 70 years
for slow-growing understory species such as Tsuga (Anderson & Katz 1993). Ev-
ergreen conifers may be particularly intolerant of browsing because they invest
heavily in leaves, retain them, and do not retranslocate nutrients to stems and roots
as much as deciduous species do (Ammer 1996). In addition, deer focus their
browsing on evergreens in winter as other food becomes scarce.

Effects on Plant Community Structure and
Interspecific Competition

Because deer forage selectively, they strongly affect competitive relationships
among plant species. These shifts, in turn, may either increase or decrease overall
cover and diversity. The result depends on whether or not deer primarily consume
dominant species. Selective foraging on tall dominant plants in an alpine meadow
favored short-statured plants, which caused species richness to increase (Schütz
et al. 2003). On Isle Royale, Risenhoover & Maass (1987) attributed the higher
diversity of woody vegetation in moose-browsed areas to increased light in the un-
derstory. Deer play a similar keystone role on other Lake Superior islands, where
they can either enhance herbaceous plant cover and diversity (by removing Taxus
canadensis cover) or reduce this cover and diversity as they become overabundant
(Judziewicz & Koch 1993). Declines in plant cover and species richness usually
occur once resistant or browse-tolerant species become dominant. Overabundant
deer also commonly cause tree diversity to decline (Gill & Beardall 2001, Horsley
et al. 2003, Kuiters & Slim 2002). We summarize contemporary browse-related
compositional shifts in boreal and temperate forests in Table 1.

TABLE 1 Compositional shifts in dominant tree species induced by deer browsing in
boreal and temperate forests

Former dominant New dominant Source

Balsam fir (Abies balsamea) White spruce Brandner et al. 1990,
(Picea glauca) McInnes et al. 1992,

Potvin et al. 2003

Birch (Betula spp.) Norway spruce Engelmark et al. 1998
(Picea abies)

Eastern hemlock Sugar maple Alverson & Waller 1997,
(Tsuga canadensis) (Acer saccharum) Anderson & Loucks 1979,

Frelich & Lorimer 1985,
Rooney et al. 2000

Mixed hardwoods Black cherry Horsley et al. 2003,
(Prunus serotina) Tilghman 1989

Oak (Quercus spp.) Savanna type system Healy et al. 1997

Scots pine (Pinus sylvestris) Hardwoods and Gill 1992b
Norway spruce
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Although deer browsing can enhance ground cover and diversity, research in
Pennsylvania demonstrates that indirect effects of browsing can also act against tree
seedlings and herb cover. In that study, openings were often invaded by the thorny
shrub Rubus allegheniensis, which promotes the establishment of tree seedlings
(Horsley & Marquis 1983). However, deer prefer this species and, thus, reduce its
abundance. This circumstance favors a competitor, the hay-scented fern Dennstae-
dia punctilobula, which deer avoid. As this species becomes more abundant, it
inhibits the establishment of tree seedlings (George & Bazzaz 1999, Horsley &
Marquis 1983) and excludes smaller-stature herbs (Rooney & Dress 1997). Once
Dennstaedia is established, cessation of browsing rarely results in a recovery by
Rubus or other species. Thus, browsing by deer shifts the forest understory to an
alternate stable state that is resistant to invasion by originally dominant species
(Stromayer & Warren 1997).

The extent to which deer deplete a plant population often depends on plant
as well as deer abundance. Augustine et al. (1998) documented that deer have
a Holling type II functional response to variable densities of the herb Laportea
canadensis. This response results in alternative states: only moderate impacts of
deer when Laportea is common at a site but extirpation when Laportea is rare. Thus,
we should not assume that deer impacts are simply proportional to deer density
across sites and should expect extirpations to accelerate once plant populations
grow sparse. These effects likely accentuate the complex deer-plant dynamics we
describe below (see Dynamics and Reversibility of Deer Impacts).

Effects on Forest Succession

Contemporary models of succession include multiple directional pathways and al-
ternative stable states that are dependent on the local abundance and colonization
potential of species, competitive interactions, and disturbance regimes (Connell &
Slatyer 1977, Glenn-Lewin & van der Maarel 1992). Sustained selective browsing
can sway these factors enough to affect forest succession dramatically (Engelmark
et al. 1998, Frelich & Lorimer 1985, Hobbs 1996, Huntly 1991). Succession ac-
celerates if deer break up the vegetation matrix enough to favor the establishment
of later successional plants (Crawley 1997, Hobbs 1996) or if deer prefer species
from early seral stages (Seagle & Liang 2001). Alternatively, succession may be
stalled if browsing reduces colonization, growth, or survival in later successional
species (Hobbs 1996, Ritchie et al. 1998).

Effects on Ecosystem Properties

By affecting competitive interactions among plants with varying levels of chemical
defenses and by altering successional trajectories, deer alter ecosystem processes
that include energy transfer, soil development, and nutrient and water cycles (Hobbs
1996, Paine 2000). When deer consume an amount of biomass that is small relative
to the standing crop, as it is in grassland systems, effects on net primary produc-
tivity may be negligible or positive (Hobbs 1996). Thus, in open and productive
grassland systems, grazing can increase primary production if grazing induces
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overcompensation in individual plants, favors more productive species, and ac-
celerates soil processes (McNaughton 1979, 1983; Ritchie et al. 1998). Browsers
accelerate nitrogen and carbon cycling if they increase the quantity and the qual-
ity of litter returned to the soil (Wardle et al. 2002). This phenomenon is more
prevalent in nutrient-rich systems (Bardgett & Wardle 2003) or when deer brows-
ing shifts the canopy composition from conifers to deciduous hardwoods (Frelich
& Lorimer 1985). Browsing in early successional communities can also facilitate
successional transitions toward nitrogen-fixing species such as Alnus sp. (Kielland
& Bryant 1998). Animal excretion also increases nitrogen cycling and modifies its
distribution across the landscape, which locally enhances availability (Bardgett &
Wardle 2003, Singer & Schoenecker 2003). In some cases, the relative contribu-
tion of this source of nitrogen may be small compared with the adverse effects of
browsing (Pastor & Naiman 1992, Pastor et al. 1993).

With an overabundant deer population, the biomass deer consume becomes large
relative to standing crops, particularly in low-productivity environments such as
forest understories (Brathen & Oksanen 2001). Thus, we generally expect deer
to reduce productivity and decelerate nutrient cycling in forest ecosystems. Here,
compensation is uncommon, growth rates are low, and deer browsing decreases
the quality and quantity of litter inputs (e.g., Ritchie et al. 1998). Browsed for-
est plots generally show reductions in understory and woody biomass accumula-
tion (Ammer 1996, Riggs et al. 2000). Similarly, if nitrogen limits productivity,
converting plant communities from palatable, deciduous, nitrogen-rich species to
species with low tissue nitrogen and more chemical defenses (e.g., conifers) will
decelerate nutrient cycling as the quantity and quality of litter available to de-
composers decline (Bardgett & Wardle 2003, Pastor & Naiman 1992, Pastor et al.
1993, Ritchie et al. 1998). Browsing has also been shown to reduce ectomycor-
rhizal infections, which amplifies reductions in nutrient intake (Rossow et al.
1997).

Cascading Effects on Animal Species

Deer exert cascading effects on animals both by competing directly for resources
with other herbivores and by indirectly modifying the composition and physical
structure of habitats (Fuller 2001, Stewart 2001, van Wieren 1998). For example,
browsing by deer affects the population and community composition of many in-
vertebrates, birds, and small mammals (Table 2). Maximum diversity within a stand
often appears to occur at moderate browsing levels (deCalesta & Stout 1997, Fuller
2001, Rooney & Waller 2003, Suominen et al. 2003, van Wieren 1998). Heavier
browsing reduces vegetative cover and complexity in the understory, which often
leads to reduced habitat availability for animals. Invertebrate and bird communities
are sensitive to changes in forest understory, especially foliage density (McShea
& Rappole 1997, Miyashita et al. 2004). Ungulates also disrupt associations of
plants and pollinators by shifting patterns of relative flower abundance (Vázquez &
Simberloff 2003). Few studies have experimentally manipulated deer densities,
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128 CÔTÉ ET AL.

T
A

B
L

E
2

(C
on

ti
nu

ed
)

Ta
xo

n/
so

ur
ce

F
or

es
t

ty
pe

an
d

si
te

C
er

vi
d

sp
ec

ie
s

R
es

ul
ts

C
om

m
en

ts

Su
om

in
en

et
al

.
Sa

li
x.

sp
.—

Po
pu

lu
s

A
lc

es
al

ce
s

T
re

nd
s

to
w

ar
d

hi
gh

er
ab

un
da

nc
e

an
d

M
od

er
at

e
m

oo
se

de
ns

ity
19

99
b

ba
ls

am
if

er
a

ea
rl

y
sp

ec
ie

s
ri

ch
ne

ss
of

gr
ou

nd
-d

w
el

lin
g

su
cc

es
si

on
al

bo
re

al
in

se
ct

s
in

br
ow

se
d

si
te

s
(n

=
7)

,
fo

re
st

(A
la

sk
a,

U
S)

ex
ce

pt
fo

r
sp

ec
ia

liz
ed

he
rb

iv
or

es
(C

ur
cu

lio
ni

da
e)

Su
om

in
en

et
al

.
P

in
us

sy
lv

es
tr

is
or

R
an

gi
fe

r
H

ig
he

r
ab

un
da

nc
e,

sp
ec

ie
s

ri
ch

ne
ss

,a
nd

20
03

B
et

ul
a

pu
be

sc
en

s
or

ta
ra

nd
us

di
ve

rs
ity

of
gr

ou
nd

-d
w

el
lin

g
be

et
le

s
in

P
ic

ea
ab

ie
s

gr
az

ed
si

te
s

(n
=

15
in

fo
ur

lo
ca

tio
ns

),
bo

re
al

fo
re

st
(F

in
la

nd
)

ex
ce

pt
fo

r
un

pr
od

uc
tiv

e
si

te
s

w
he

re
di

ve
rs

ity
w

as
lo

w
er

th
an

in
gr

az
ed

si
te

s

W
ar

dl
e

et
al

.2
00

1
So

ut
he

rn
te

m
pe

ra
te

L
ow

er
ab

un
da

nc
e

of
m

ic
ro

ar
th

ro
po

ds
an

d
L

ar
ge

ge
og

ra
ph

ic
al

ex
te

nt
fo

re
st

(N
ew

Z
ea

la
nd

)
m

ac
ro

fa
un

al
gr

ou
ps

in
gr

az
ed

si
te

s
(n

=
30

)

B
ir

ds
de

C
al

es
ta

19
94

P
ru

nu
s

se
ro

ti
na

,
O

do
co

il
eu

s
D

ec
lin

es
of

27
%

an
d

37
%

in
sp

ec
ie

s
C

on
tr

ol
le

d
gr

az
in

g
A

ce
r

ru
br

um
,

vi
rg

in
ia

nu
s

ri
ch

ne
ss

an
d

ab
un

da
nc

e
of

in
te

rm
ed

ia
te

ex
pe

ri
m

en
tw

ith
fo

ur
A

.s
ac

ch
ar

um
,

ca
no

py
ne

st
er

s
be

tw
ee

n
lo

w
es

ta
nd

si
m

ul
at

ed
de

ns
iti

es
Fa

gu
s

gr
an

di
fo

li
a

hi
gh

es
td

ee
r

de
ns

iti
es

;n
o

ef
fe

ct
on

gr
ou

nd
no

rt
he

rn
ha

rd
w

oo
ds

an
d

ca
no

py
ne

st
er

s;
de

ns
ity

th
re

sh
ol

d
(P

en
ns

yl
va

ni
a,

U
S)

be
tw

ee
n

7.
9

an
d

14
.9

de
er

/k
m

2



6 Oct 2004 19:43 AR AR229-ES35-05.tex AR229-ES35-05.sgm LaTeX2e(2002/01/18) P1: GJB

IMPACTS OF DEER OVERABUNDANCE 129

D
eG

ra
af

et
al

.1
99

1
Q

ue
rc

us
sp

.
O

do
co

il
eu

s
L

ow
er

sp
ec

ie
s

ri
ch

ne
ss

an
d

ab
un

da
nc

e
do

m
in

at
ed

no
rt

he
rn

vi
rg

in
ia

nu
s

of
ca

no
py

fe
ed

er
s

at
hi

gh
er

de
er

de
ns

ity
;

ha
rd

w
oo

ds
lo

w
er

m
ig

ra
to

ry
sp

ec
ie

s
ri

ch
ne

ss
an

d
(M

as
sa

ch
us

et
ts

,U
S)

hi
gh

er
re

si
de

nt
sp

ec
ie

s
ri

ch
ne

ss
in

th
in

ne
d

st
an

ds
w

ith
hi

gh
br

ow
si

ng
;n

o
di

ff
er

en
ce

in
om

ni
vo

ro
us

,i
ns

ec
tiv

or
ou

s,
an

d
gr

ou
nd

-f
ee

di
ng

sp
ec

ie
s

ri
ch

ne
ss

an
d

ab
un

da
nc

e
(n

=
12

)

M
cS

he
a

&
Q

ue
rc

us
sp

.
O

do
co

il
eu

s
In

cr
ea

se
d

ab
un

da
nc

e
of

gr
ou

nd
ne

st
er

s
an

d
R

ap
po

le
do

m
in

at
ed

m
ix

ed
vi

rg
in

ia
nu

s
in

te
rm

ed
ia

te
ca

no
py

ne
st

er
s

as
un

de
rs

to
ry

20
00

ha
rd

w
oo

ds
(V

ir
gi

ni
a,

ve
ge

ta
tio

n
re

su
m

ed
gr

ow
th

in
ex

cl
os

ur
es

U
S)

(n
=

4)
,b

ut
no

in
cr

ea
se

in
di

ve
rs

ity
be

ca
us

e
of

sp
ec

ie
s

re
pl

ac
em

en
t

M
os

er
&

P
in

us
po

nd
er

os
a

C
er

vu
s

el
ap

hu
s

N
o

di
ff

er
en

ce
in

ab
un

da
nc

e,
sp

ec
ie

s
ri

ch
ne

ss
E

xc
lo

su
re

s
of

20
to

W
itm

er
co

ni
fe

ro
us

fo
re

st
an

d
di

ve
rs

ity
be

tw
ee

n
un

gr
az

ed
(n

=
3)

40
ha

20
00

(O
re

go
n,

U
S)

an
d

gr
az

ed
(n

=
3)

si
te

s

Sm
al

lm
am

m
al

s
M

cS
he

a
20

00
Q

ue
rc

us
sp

.
O

do
co

il
eu

s
In

te
ra

ct
io

n
be

tw
ee

n
de

er
br

ow
si

ng
an

d
do

m
in

at
ed

m
ix

ed
vi

rg
in

ia
nu

s
pr

ev
io

us
ye

ar
ac

or
n

cr
op

:h
ig

he
r

Ta
m

ia
s

ha
rd

w
oo

ds
(V

ir
gi

ni
a,

st
ri

at
us

an
d

Pe
ro

m
ys

cu
s

le
uc

op
us

U
S)

ab
un

da
nc

e
in

ex
cl

os
ur

es
(n

=
4)

af
te

r
lo

w
-m

as
ty

ea
rs

,b
ut

no
di

ff
er

en
ce

af
te

r
go

od
-m

as
ty

ea
rs

M
os

er
&

P
in

us
po

nd
er

os
a

C
er

vu
s

el
ap

hu
s

H
ig

he
r

ab
un

da
nc

e,
sp

ec
ie

s
ri

ch
ne

ss
,a

nd
E

xc
lo

su
re

s
of

20
to

W
itm

er
20

00
co

ni
fe

ro
us

fo
re

st
di

ve
rs

ity
in

un
gr

az
ed

(n
=

3)
th

an
in

40
ha

(O
re

go
n,

U
S)

gr
az

ed
(n

=
3)

si
te

s



6 Oct 2004 19:43 AR AR229-ES35-05.tex AR229-ES35-05.sgm LaTeX2e(2002/01/18) P1: GJB
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which makes drawing strong inferences about the relationship between animal
diversity and deer density difficult. A notable exception is the study by deCalesta
(1994) of songbirds, in which a controlled grazing experiment (Horsley et al.
2003) was used to demonstrate negative and nonlinear relationships between bird
diversity and deer abundance.

By modifying species abundance and diversity, deer can modify trophic in-
teractions among species. For example, deer potentially change the interactions
between mast availability, small mammals, birds, and insects (McShea 2000,
McShea & Schwede 1993, Ostfeld et al. 1996). Effects on interactions within
the food web may be particularly important in ecosystems where several species
of large herbivores coexist, such as in western North America, Spain, or the United
Kingdom.

Dynamics and Reversibility of Deer Impacts

Large herbivores have the ability to act as “biological switches” that move forest
communities toward alternative successional pathways and distinct stable states
(Hobbs 1996, Laycock 1991, Schmitz & Sinclair 1997). Models of forest dynamics
also demonstrate how browsing by deer can alter the rate of succession (Seagle &
Liang 2001), forest structure and composition (Kienast et al. 1999), successional
pathways (Jorritsma et al. 1999, Tester et al. 1997), and ultimate stable states
(Kramer et al. 2003). In classical succession models, the relation between deer
browsing and plant abundance is gradual (Figure 2a) or sudden (Figure 2b) but
in both cases, reversible. Unlike succession, however, alternative stable states are
not readily reversible when the browsing pressure is reduced (Scheffer et al. 2001,
Westoby et al. 1989). In Figure 2c, the system may not appear to change much as
deer densities gradually increase. Then, a sudden transition may occur that sharply
reduces plant population levels (or overall system diversity or productivity). Even
dramatic declines in deer density at this point have little effect; recovery only
occurs if deer densities remain low through some extended period of time and
interventions favoring vegetation recovery are applied (May 1977, Scheffer et al.
2001, Schmitz & Sinclair 1997). By analogy with physical systems, such lags and
history dependence are termed “ecological hysteresis.” Such nonlinear dynamics
have been described in rangeland pastures (May 1977, Laycock 1991, Lockwood &
Lockwood 1993), savanna-woodland systems (Dublin 1995, Scheffer et al. 2001),
and temperate and boreal forests (Augustine et al. 1998, Pastor et al. 1993).

Interactions with Predators

The role of predators in controlling ungulate populations remains uncertain, at least
in some systems. Particular examples exist where the introduction of a predator did
not, by itself, control ungulate populations. Wolves moving onto Isle Royale did
not prevent moose overpopulation, food depletion, and a subsequent crash caused
by starvation (Peterson 1999).
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Figure 2 Three hypothetical relationships between the abundance of a forage plant
and deer browsing pressure. (a) Deer have only modest and monotonic effects on
the population. (b) A reversible threshold exists beyond which plant abundance drops
precipitously. (c) Browsing beyond a certain threshold point causes a nonlinear de-
cline that is not simply reversible. The plant population requires a large (or pro-
longed) reduction in browsing as well as a disturbance factor that promotes an increase
of its abundance to recover. This requirement indicates an “alternate stable state.”
Arrows indicate dynamic changes at various points. Modified from Scheffer et al.
(2001).
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Recent research suggests, however, that large predators play important eco-
logical roles. They appear to control the abundance of the “mesopredators” [e.g.,
raccoon (Procyon lotor), skunk (Mephitis mephitis), etc.] that prey on birds and
small mammals (Crooks & Soulé 1999, Terborgh 1988). The presence of two
or more predator species in the same region could work synergistically to exert
significantly more population control on ungulates than either alone could exert
(e.g., Gasaway et al. 1992). In the Glacier National Park area, a study by Kunkel
& Pletscher (1999) concluded that combined predation from cougar and wolves
is the primary factor that limits deer and elk populations. Analyzing results from
27 studies across North America, Messier (1994) used functional and numerical
responses of wolves to moose to conclude that equilibrial moose densities would
decline (from 2.0/km2 to 1.3/km2) in the presence of wolves. Furthermore, if habi-
tat quality deteriorates or mortality from another predator increases, wolves are
predicted to hold moose to a much lower equilibrium (0.2 to 0.4 moose/km2). Pre-
dation effects are often nonlinear (Noy-Meir 1975) and involve lags in the manner
illustrated in Figure 2b and 2c (substitute deer for plant abundance on the y-axis
and predation for browsing pressure on the x-axis). Indeed, under a combined sce-
nario, a functional guild of large predators might keep deer populations down to
densities compatible with the upper curve of plant abundance in Figure 2c. Loss
of predators could then flip the system to the alternate state represented by the
bottom curve.

RESEARCH NEEDS

Whereas some species benefit from overabundant deer populations (Fuller & Gill
2001, Russell et al. 2001), overabundant deer annihilate many taxa, which dis-
rupts community composition and ecosystem properties (Table 2) (deCalesta &
Stout 1997, McShea & Rappole 1997). Between these extremes, we face much
uncertainty. Ecologists should now work to identify threshold densities at which
substantial impacts occur and devise effective strategies to limit deer impacts and
sustain ecosystem integrity, i.e., the capacity of an ecosystem to preserve all its
components and the functional relationships among those components following
an external perturbation (sensu De Leo & Levin 1997; see also Hester et al. 2000,
Scheffer & Carpenter 2003). Which species are affected by deer and at what den-
sities? How fast do impacts occur? How quickly do plant populations, forest struc-
ture, and ecosystem processes recover? To what extent are deer populations and
impacts constrained by food resources, predators, diseases, or hunting, and how do
these limiting factors interact? This uncertainty places ecologists in an awkward
position when they try to make deer management recommendations (see final sec-
tion, (How) Can We Limit Deer Impacts?). Because forest communities can suffer
long-term effects that are difficult to reverse, ecologists should make precautionary
recommendations.

Given potential threshold effects and alternative stable states, how should we
design our research? We need more controlled experiments that directly manipulate
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deer densities and other factors known to influence forest dynamics (e.g., logging)
(Bergström & Edenius 2003, Fuller 2001, Healy et al. 1997, Hester et al. 2000,
Hobbs 1996, Rooney & Waller 2003). Such experiments should span different
forest types, which would allow us to predict how forest types will respond to
variable deer densities (Hjalten et al. 1993, Riggs et al. 2000). We should also
monitor both immediate and delayed effects and track dynamic responses to both
increases and decreases in deer density. Results from such manipulations would
allow us to identify what windows of low deer density are needed across space
and time to allow deer-sensitive plants to persist or recover in the landscape (Sage
et al. 2003, Westoby et al. 1989). Eventually, results from such experiments will
allow ecologists to make specific recommendations at the right scales, such as
10 years of fewer than 7 deer/km2 over areas of at least 60 km2 (Hobbs 2003,
Weisberg et al. 2004).

Deer management must move beyond a population-based approach to an ap-
proach that considers whole-ecosystem effects (McShea et al. 1997b). Fuller &
Gill (2001) suggest that we quantify the relationships between community com-
position across taxa and deer at various abundances to understand the full range
of deer impacts on biodiversity. Knowing how deer affect the moss layer, herbs,
shrubs, saplings, trees, invertebrates, small mammals, and birds at low, intermedi-
ate, and high grazing intensities would be a major step forward. In the absence of
fenced-in areas with known numbers of deer, such approaches will require that we
improve our ability to estimate local deer abundances. Indicators based on veg-
etation measurements increase our capacity to implement localized management
programs and to monitor progress toward specific management goals (Augustine
& DeCalesta 2003, Augustine & Jordan 1998, Balgooyen & Waller 1995, McShea
& Rappole 2000). Applied research extends to include the selection of species,
varieties, and genotypes more resistant to browsing (Gill 1992b) and evaluating
the risks of epidemics associated with high deer densities.

We must also learn more about how forage conditions, predator populations,
and human hunting interact to affect deer population dynamics. We should seek
to understand the potentially complex dynamics of tritrophic-level interactions.
We need more data from a variety of systems on when predators can, alone or in
combination with other factors, control deer densities. Likewise, we need to learn
more about the “ecology of fear” (Brown et al. 1999), that is, how predators might
influence browsing behavior even before they are numerous enough to reduce
population growth appreciably (Ripple & Beschta 2003). We also have more to
learn about sport hunting. We cannot yet predict, for example, how local hunting
of philopatric females influences subsequent local deer densities (Côté et al. 2004,
McNulty et al. 1997, but see Oyer & Porter 2004).

Finally, ecologists should work to integrate the results of individual studies into
models capable of forecasting deer populations and impacts accurately enough to
provide managers with sound guidance when they make decisions. Such models
should integrate deer population dynamics with forest dynamics and deer hunter
impacts (Tester et al. 1997). They should also incorporate the uncertainty that
underpins interactions between management and science (Bergström & Edenius
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2003, Bugmann & Weisberg 2003, Tremblay et al. 2004). Such models, and the
research previously mentioned, have a logical place in hunter education programs
and revised programs of deer management.

MANAGEMENT ISSUES

Historically, game managers strove to augment and protect deer populations, and
hunters learned to limit takes and favor bucks. Today, such precepts are outmoded,
but unlearning old lessons and reversing this cultural momentum has proved
difficult.

The management of deer and the management of vegetation remains divorced,
and this situation hampers our ability to manage them jointly (Healy et al. 1997).
Their management commonly occurs in different agencies with contrasting goals
and paradigms. Even the scales are different; deer density is usually estimated
regionally, whereas forest managers operate on individual stands. In contrast,
adaptive management seeks to merge research with management by using manage-
ment prescriptions as experimental manipulations, with appropriate control areas,
and by regularly incorporating research results into revised management practices
(Holling 1978, Walters 1986). Ecosystem management is a further extension of
conventional management that emphasizes historical patterns of abundance and
disturbance and ecosystem dynamics at various scales (Christensen et al. 1996).
Such approaches emphasize the importance of managing deer as part of a com-
plex system. That promise has yet to be fully realized. Nevertheless, ecologists
and wildlife managers are beginning to integrate biodiversity concerns into deer
management (deCalesta & Stout 1997, Rooney 2001).

(How) Can We Limit Deer Impacts?

Foresters exploit a variety of techniques to control deer impacts locally. Keeping
sapling stem density high through thinning or planting and increasing hunting pres-
sure, for example, can allow a greater proportion of stems to escape browsing (Lyly
& Saksa 1992, Martin & Baltzinger 2002, Welch et al. 1991, Reimoser 2003). Ev-
idence indicates that within species, individual seedlings differ genetically in their
susceptibility to browsing (Gill 1992b, Roche & Fritz 1997, Rousi et al. 1997,
Vourc’h et al. 2002), which suggests that selection for more resistant saplings
might be possible. Individual plastic tubes and wire fencing efficiently exclude
deer but are costly, which limits their use to valuable seedlings or stands (Côté
et al. 2004, Lavsund 1987). Electric fences are less effective but are also less expen-
sive (Hygnstrom & Craven 1988). Repellents are also available. The most efficient
repellents create fear (e.g., predator urine) (Nolte 1998, Nolte et al. 1994, Swihart
et al. 1991, Wagner & Nolte 2001). The effectiveness of repellents increases with
their concentration (Andelt et al. 1992, Baker et al. 1999) but decreases with
(a) time since application (Andelt et al. 1992, Nolte 1998), (b) attractiveness of
the food (Nolte 1998, Swihart et al. 1991, Wagner & Nolte 2001), (c) deer hunger



6 Oct 2004 19:43 AR AR229-ES35-05.tex AR229-ES35-05.sgm LaTeX2e(2002/01/18) P1: GJB

IMPACTS OF DEER OVERABUNDANCE 135

(Andelt et al. 1992), and (d) rainfall (Sayre & Richmond 1992). Similar meth-
ods are often employed to prevent accidents near airfields and highways (Groot
Bruinderink & Hazebroek 1996, Putman 1997). Reflectors (Groot Bruinderink &
Hazebroek 1996) and sound devices (Bomford & O’Brien 1990), such as gas ex-
ploders, appear ineffective in deterring deer for long periods unless the devices are
activated by motion sensors (Belant et al. 1996).

Sport hunting and relocation are two methods available for controlling deer
populations. Most wildlife managers consider sport hunting to be the most efficient
and cost-effective method of controlling deer over large areas (Brown et al. 2000).
Relocation is expensive, and relocated deer do not remain in the area of release.
They also suffer high mortality (Beringer et al. 2002, McCullough et al. 1997).
Sport hunting is often limited, however. For example, sport hunting cannot take
place on private lands posted against hunting, in remote locations, or in urban and
suburban areas. The number of hunters is also declining (Enck et al. 2000). Hunters
rarely focus on young animals or hunt throughout the year as other predators do.
Thus, the effectiveness of hunters is reduced. These trends, combined with growing
deer populations, suggest that deer may have surpassed the point where sport
hunting can reliably control their numbers (Brown et al. 2000, Giles & Findlay
2004). “Quality deer management” programs constitute an important countertrend.
These programs emphasize killing doe and young animals to reduce densities,
which favors the growth of large trophy bucks (Miller & Marchinton 1995).

The need for intentional culling will continue for the foreseeable future as
deer populations continue to increase worldwide (McIntosh et al. 1995, McLean
1999). Hunting antlerless deer generally reduces abundance on a local scale be-
cause social groups of females usually remain in the same area from year to year
(Kilpatrick et al. 2001, McNulty et al. 1997, Sage et al. 2003). This behavior
prevents a rapid recolonization of the hunted area (Oyer & Porter 2004). Some
affluent suburban neighborhoods employ sharpshooters working at night with low-
light optics and silencers to control deer. Others have begun to experiment with
birth control methods. Various fertility control and immunocontraceptive tech-
niques can limit reproduction in deer (McShea et al. 1997a, Turner et al. 1992,
Waddell et al. 2001). However, these methods are labor intensive and disrupt nor-
mal reproductive behavior (Nettles 1997); thus, their application is expensive and
difficult to scale up (McCullough et al. 1997, McShea et al. 1997a, Turner et al.
1992).

Deer control efforts to date have focused on redirecting sport hunting, applying
hunts specifically to reduce deer numbers, and a few high-cost techniques aimed
at protecting small areas that are typically of high value. All these methods have
proved inadequate thus far in preventing deer from overpopulating broad areas.
Some hunters and deer managers dispute that we have any problem associated
with high deer density. Still others argue that such problems are temporary or
local. Even where we have agreement on the need to control deer, we see little
consensus on how to achieve it. No new hunter ethos emphasizing the ecological
role of hunters in limiting deer numbers and impacts has yet emerged.
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Experimental hunting sites with longer seasons, liberalization of bag limits (es-
pecially for antlerless deer), and increased hunter participation could help reduce
local deer density (Brown et al. 2000, Côté et al. 2004, Martin & Baltzinger 2002).
Because hunters rarely fully understand deer effects on ecosystems (Diefenbach
et al. 1997), scientists should provide them and society with specific goals, strate-
gies, and actions to conserve ecosystems better.

Given divergent opinions and uncertainty, what should ecologists recommend
to wildlife and land managers? The answer clearly depends on local situations
and what is known about them. We urge ecologists to promote a precautionary
approach. Because overabundant deer can cause severe, long-term impacts that are
difficult to reverse, ecologists should persuade managers to reduce deer numbers
before and not after such impacts become evident. Although research results and
active involvement by ecologists may not change attitudes quickly, they play crucial
long-term roles in redirecting people’s attitudes and patterns of management.
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process. Ecoscience 10:487–95

Putman RJ. 1986. Foraging by roe deer in



6 Oct 2004 19:43 AR AR229-ES35-05.tex AR229-ES35-05.sgm LaTeX2e(2002/01/18) P1: GJB
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Clausen TP. 2001. Defensive adaptations of
Thuja plicata to ungulate browsing: a com-
parative study between mainland and island
populations. Oecologia 126:84–93

Vourc’h G, Vila B, Gillon D, Escarré J, Guibal
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