Deer densities consistent with the natural regeneration of balsam fir – white birch forest on Anticosti Island

Are deer impacts directly proportional to their density?

Jean-Pierre Tremblay1, 2, Jean Huot1, 2 & François Potvin1, 3

1 Département de biologie, Université Laval
2 Centre d’études nordiques
3 Ministère des Ressources naturelles et de la faune du Qc
Cervids as driving disturbances in forest ecosystems

Overabundant populations worldwide threaten forest integrity

Key components of forests

Population should reach carrying capacity, crash or enter a cyclic regime in relative phase with resources
The paradox in Anticosti deer-forest system

POPULATION

1900 1920 1940 1960 1980 2000

Fir

Birch

Deciduous
Litterfall as an alternative food source...

<table>
<thead>
<tr>
<th></th>
<th>Biomass (kg/ha ± se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alectoria + Bryoria</td>
<td>6.4 ± 1.3</td>
</tr>
<tr>
<td>Ramalina</td>
<td>3.3 ± 0.8</td>
</tr>
<tr>
<td>Total</td>
<td>9.7 ± 1.7</td>
</tr>
<tr>
<td>Balsam fir twigs</td>
<td>11.9 ± 4.1</td>
</tr>
</tbody>
</table>

777 ± 87 kg of lichens and 1110 ± 210 kg of browse per winter at the scale of the home range of a doe

Could sustain 8.5 to 17.2 does/km²

... and an ecological subsidy uncoupling deer from resources

Deer act as a diffuse disturbance, independent from resources, which slowly undermine forest resilience
Hypothetical structures of deer-forest relationships

Classical succession

Complex systems

Intermediate disturbance

Complex systems with thresholds

Multiple equilibrium
A controlled grazing experiment at the scale of multiple forest stands

In situ density
- A, C = 56 deer/km²
- B = 27 deer/km²

- 3 deer: 7.5 deer/km²
- 0
- 3 deer: 15 deer/km²

3 replicates
Monitored for 3 years (YAG)
Exponential growth of deer-induced seedlings mortality

<table>
<thead>
<tr>
<th>Deer density (deer/km²)</th>
<th>Mortality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

Cumulative mortality rate = 74 ± 8 at 56 deer/km²
64 ± 11% from browsing
Heterogeneity in tree species responses

Indirect impact: changes in plant-plant interactions
Unbrowsed (resistant) species gain apparent competitive advantage
Change to the field layer community assemblage

- cutover
- ▲ understory
- 1 YAG
- 2 YAG
- 3 YAG

Epilobium angustifolium

- Aboveground biomass (g/m²)
- Deer density (deer/km²)

Indirect impact: changes in plant-plant interactions
Tolerant species gain apparent competitive advantage
Summing up: complex nonlinear ecological relationships within a simple system

- Exponential decay or growth of most indicators of integrity in cutover after 2-3 years
- Cannot rule out intermediate disturbance hypothesis
 - Recovery phase
 - Less likely in systems with short history of herbivory
- No response thresholds or <7.5 deer/km²
- Change in plant-plant interactions
- Tend to support multiple equilibrium hypothesis
A conceptual framework based on the catastrophe theory

High integrity dynamic regime

Low integrity dynamic regime:
- positive feedbacks

Cusp catastrophe
i.e. potentially irreversible threshold

Deer act as slow disturbance

t₀ cutover

Low integrity dynamic regime:
positive feedbacks
$t_0 = \text{cut}$
Low integrity dynamic regime: positive feedbacks

Cusp catastrophe i.e. potentially irreversible threshold
In conclusion

- Local deer density >15deer/km² for >3 years after a canopy disturbance may not be sufficient to allow restoration of forest integrity.

- When compared to density estimate from aerial survey, it could correspond to densities of 10 to 12 deer/km² (30-40% availability bias).

- Restoration of altered forest system may require direct intervention.

- The perspective of catastrophic regime shifts calls for a precautionary approach in the management of deer-forest systems.
Acknowledgements

CHAIRE de recherche industrielle CRSNG-Produits forestiers Anticosti
Université Laval

Centre d'études nordiques

THE MACAULAY INSTITUTE

CRSNG NSERC

Produits forestiers Anticosti inc.

UNIVERSITÉ LAVAL

Fonds de recherche sur la nature et les technologies

Québec

Ressources naturelles, Faune et Parcs

Québec

+ the love labo and friends