Short-term effects of white-tailed deer density reduction on insect communities

Pierre-Marc Brousseau
Conrad Cloutier
Christian Hébert
Steeve D. Côté
Problematic

• Impacts of overabundant cervid populations
 • Modification of plant communities (Rooney et Waller 2003)
 • Can be detrimental to forest regeneration (Watson 1983, Tremblay et al. 2007)
 • Can have indirect effects on birds, small mammals and arthropods
Problematic

• About insects (and other arthropods)

 • Carabidae and spiders are the most studied

 • Web-spiders are negatively affect by high browsing (Miyashita et al. 2004, Baines et al. 1994)

 • Ground spiders are positively affected (Takada et al. 2008, Dennis et al. 2001)

 • Results are sometime contradictory for Carabidae (Melis et al. 2007, Gardner et al. 1997)
 • But they seem positively affected by high browsing
Other studied taxa

- *Hemiptera* (Morris 1973)
- *Curculionidae* (Suominen et al. 2003)
- *Lepidoptera* (Kruess et Tscharntke 2002)
- Bees and solitary wasps (Kruess et Tscharntke 2002)

In general:

- Taxa directly associated with plants are negatively affected by high browsing pressure
- Ground taxa are positively affected
Goal

To evaluate the short-term impact of deer density reduction on insects

1 – Carabidae
2 – Apoidea
3 – Syrphidae
4 – Macro Lepidoptera
Goal

Carabidae (Coleoptera)

- Epigeal predators (most of them)
- Often studied in relation to cervid browsing

Macro Lepidoptera

- Herbivore at larval stade
- Often mono- or oligophagous
Goal

Apoidea (Hymenoptera)
- Most important pollinators
- Nesting (social or solitary)

Syrphidae (Diptera)
- Pollinators when adult
- Predators or saprophagous at larval stage
Goal

- "Gradient" of relationship with plants

Relationship with plants:

- Herbivores (Lepidoptera)
- Strict Pollinators (Apoidea)
- Non strict Pollinators (Syrphidae)
- Epigeal predators (Carabidae)
Study site

- Harvested (≈70%) in 2001
- Forest

- 0 deer/km² (10 ha)
- 7.5 deer/km² (3 deer in 40 ha)
- 15 deer/km² (3 deer in 20 ha)
- Uncontrolled density: >20 deer/km²
Materials and methods

- Pollinators sampling
 - Malaise trap
 - 1 per experimental unit
 - In harvested area: ~50 m from forest edge

Materials and methods

- Moths sampling
 - Luminoc traps
 - At 3 m above ground
 - 4 per experimental unit
 - 2 in harvested area
 - 2 in forested area

- Carabidae sampling
 - Pit-fall traps
Pollinators: results

• Apoidea
 • 1308 specimens
 • 35 species

• Syrphidae
 • 7481 specimens
 • 112 species
Apoidea: results

- Communities are separated in function of:
 - Block A vs. B and C
 - Uncontrolled densities vs. Reduced densities
RDA for Syrphidae

![Graph showing ordination analysis with species as Dryopteris disjuncta, Coptis groenlandica, and Melanostoma mellinum. The graph is labeled as RDA1 (λ = 0.12) on the y-axis and RDA1 (λ = 0.21) on the x-axis. Points represent different species with circles and squares indicating specific groups.]

• High similarity between communities at high densities
 • Diversification of communities at reduced densities

• Syrphid communities are strongly dominated by few species at high densities
 • As *M. mellinum* and *P. angustatus*
Macro Lepidoptera
Lepidoptera: results

- Macro Lepidoptera
 - 1505 specimens
 - 108 species
RDA for Lepidoptera in harvested areas

RDA1 (λ = 0.18)

Abies balsamea
Rubus idaeus
Rubus pubescens

RDA1 (λ = 0.15)
Lepidoptera: results

- Uncontrolled densities clearly separated from reduced densities

- Diversification of communities at reduced densities
Carabidae: results

- Carabidae
 - 1878 specimens
 - 30 species

- No significant RDA obtained
Cumulative abundance of all rare species of a taxon in each deer density and in harvested areas

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Deer density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Apoidea</td>
<td>38</td>
</tr>
<tr>
<td>Carabidae</td>
<td>10</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>43<sup>a</sup></td>
</tr>
<tr>
<td>Syrphidae</td>
<td>124</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

• The strength of the impact of deer density reduction on insects is a function of their degree of relationship with plants

 • No impact is observed for Carabidae while strong impacts are noticed for macro Lepidoptera

 • Fast return of rare Lepidoptera species

• Deer density reduction at 15 cerfs/km² is enough to permit a higher diversification of insect communities

 • The block effect is stronger at reduced deer densities

 • Increase in the number of ecological niche
Remerciement

Jean-Pierre Tremblay, Sonia de Bellefeuille, Denis Duteau, Caroline Hins, Richard Berthiaume, Yves Dubuc, George Pelletier, Éric Domaine, Jean-Philippe Légaré, Jonathan Boucher, Olivier Norvez, Sébastien Bélanger, Ermias Azeria, Étienne Cardinal, François Lebel, Marianne Bachand, Mathieu Dufresne.

Aides de terrain et de laboratoire

Jannick Gingras, Julien, Nicolas Giasson, Yan Paiement
Questions ?